

CANNED MOTOR PUMPS TYPE CNP / CNPF / CNPK

PRODUCT INFORMATION

Contents

General information	3
Function	4
Functional principle CNP	4
Functional principle CNPF	5
Functional principle CNPK	6
Functional principle	7
Bearings	7
Axial thrust balancing	8
Design options	9
Design	9
Characteristic maps	11
2950 rpm 50 Hz	11
1475 rpm 50 Hz	12
3550 rpm 60 Hz	13
1775 rpm 60 Hz	14

Advantages	15
Technical data	17
Materials	17
Pressure and temperature limits	18
Canned motors	19
Documentation and tests	20
Spare parts	21
Monitoring equipment	23
Contact	25

Contents
General information
Function
Functional principle
Design options
Characteristic maps
Advantages
Technical data
Documentation and tests
Spare parts
Monitoring equipment
Contact

 \searrow

Information

Operational areas / applications

For the safe transport of aggressive, toxic, hot, explosive, valuable and flammable liquids and liquefied gases.

Model / design

Horizontal, sealless spiral housing pumps in process design with completely closed canned motor with radial impeller, single-stage, single-flow. Design according to API 685.

Canned motor pump type CNP

The CNP model is a standard design of the HERMETIC canned motor pump and is suitable for conveying all common liquids that are not close to steam pressure (not boiling media).

Canned motor pump type CNPF

The CNPF model is the version for liquefied gases, boiling media and condensate. With an integrated auxiliary impeller and internal fluid return, it is suitable for conveying liquids close to steam pressure.

Canned motor pump type CNPK

The CNPK model is the version for conveying hot organic heat transfer oils as well as heating bath liquids.

Drive

The rotor lining, one of our core competences, is manufactured using the compact extrusion method and as a nickel-base alloy, it is an essential component of the highly efficient canned motor. The pressure-resistant enclosed version of our canned motor complies with explosion protection according to Directive 2014 / 34 / EU. The canned motor filled with liquid accelerates to the operating speed in seconds. It is wear-free and maintenance-free during continuous operation due to the hydrodynamic sleeve bearings. The canned motor with low noise and vibration and offers double security to prevent leaks.

Operating data

Frequency:	50 Hz	60 Hz
Pump capacity [Q]:	max. 800 m³/h	max. 900 m ³ /h
Pumping head [H]:	max. 250 m	max. 300 m
Output power [P2]:	max. 520 kW	max. 622 kW
Conveyed material temperature [t] CNP / CNPF:	–120°C to +360°C	–120°C to +360°C
Conveyed material temperature [t] CNPK:	max. +425 °C	max. +425°C
Operating pressure:	50 bar	50 bar

(Extended rating scheme available on request)

Pump and hydraulic denomination

CNP 100 x 80 x 200 B1

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Functional principle CNP

The partial flow for cooling the motor and lubricating the slide bearings will be deverted at the periphery of the impeller and, after having passed through the motor, is recirculated through the hollow shaft to the suction side of the impeller. This design is suitable for the delivery of uncritical liquids at low vapour pressures.

Recirculation of partial flow to suction side

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Functional principle CNPF

The partial flow for cooling the motor and lubricating the slide bearings will be diverted at the periphery of the impeller and, after having passed through the motor, is recirculated to the discharge side. An auxiliary impeller is used to overcome the hydraulic losses encountered along the way. The recirculation of the partial flow towards discharge side ensures that the heated motor cooling flow has sufficient excess pressure above the boiling point of the pumped liquid during re-entry into the pump. This pump design can be used for liquefied gases with an extremely steep vapour pressure curve.

Recirculation of partial flow to discharge side

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Functional principle CNPK

The liquid is delivered from the suction side through the impeller to the discharge side. A thermal barrier avoids the direct heat transfer from the pump to the motor part. The motor heat losses are dissipated by a secondary cooling / lubricating circuit via a separate heat exchanger. This cooling / lubricating circuit also supplies the slide bearings. Thus the liquids at temperatures up to +425 °C can be conveyed while the secondary cooling cycle is at a lower temperature level. This construction is also suitable for conveying polluted or particle-containing liquids. If applicable, pure process liquid needs to be injected into the motor circuit.

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Bearings

The hermetically sealed design requires the arrangement of the bearings within the pumped liquid. Therefore, only hydrodynamic slide bearings are used in most cases. During normal operation slide bearings have the advantage that there is no contact between the sliding surfaces of the bearing. In continuous operation, they are wear- and maintenance-free. Service life of 8 to 10 years can be easily achieved by using hermetically sealed pumps.

The almost universal bearing combination materials based on tungsten carbide (W5) and silicon carbide (SiC30) have proven to be the best choice. These combinations consist of a metallic shaft sleeve made of stainless steel (1.4571) coated with tungsten carbide by means of a "High Velocity Oxygen Fuel" process and a fixed bearing bushing made of ceramic material (SiC30) that is surrounded by a sleeve made of stainless steel. SiC30 is a mixed material of silicon carbide and graphite, combining the product advantages of both materials. Conditions of mixed friction, as they may arise for example during start-up and stopping of the pump, can be easily handled with SiC30. Moreover, this material is thermal shock resistant (high resistance against changes in temperature), as well as chemically inert, blister resistant (no formation of bubbles at material surface) and abrasion resistant.

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Axial thrust balancing

The development of HERMETIC pump systems depended on the solution of a central problem, namely the elimination of axial thrust at the rotor equipment. The various fluid properties exclude the possibility of using mechanical axial bearings. The only generally valid solution to this problem thus lay in hydraulic balance of the rotor.

The hydraulic balancing device of range CNP / CNPF / CNPK is based on a variable throttling device on the balancing disc. Depending on the rotor's axial position the pressure within the pressure compensation chamber may change due to the valve effect caused by the variable throttling clearance and thus, it works against the rotor's axial thrust. The pressure within the pressure compensation chamber consequently changes due to the axial position of the rotor. The axial position of the pump shaft is automatically regulated during operation so that a balanced condition is created by itself and thus, there are no effects by axial forces on the axial bearing collar of the slide bearings.

Hermetic

Contents

General information Function Functional principle Design options Characteristic maps Advantages Technical data Documentation and tests Spare parts Monitoring equipment

Contact

ZART® simply best balance

Design

Medium Duty Design

The food-mounted construction with casing according to OH1 (API 610) and flange acc. to ANSI 150 lbs is a feature of this design. This alternative design can be used for each application that do not require a "heavy duty design" according to API 685.

Completely heatable / coolable construction

With heating / cooling jacket on pump casing, motor casing, intermediate lantern and bearing cover. Thus, even liquids with high or different viscosity values (such as, e.g. sulfur, phenol, acrylonitrile) can be conveyed.

Top-Top configuration

In case of high-temperature applications, the suction and pressure flange can be designed vertically (the so-called TOP-TOP configuration) according to API requirements. Thus, the tubing can be effected more easily and the number of possibly required tube bends can be reduced.

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Design

High system pressures

High system pressures (up to 1200 bar) can be handled by canned motor pumps in a technically simple manner. The wall thickness of the outer components corresponds to the required pressure rate.

CNPFH

Pressure gases / liquefied gases

Due to the low viscosity and the resulting reduced capacity of the slide bearings, the pump can be erected vertically. In this case, the slide bearings do not have support properties, but only a leading function. The rotor weight is hydrostatically supported here.

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Contact

CNPFV

2950 rpm 50 Hz

Denomination of hydraulics shown in the characteristics maps

1	50x25x190	8	80x40x290	15	80x50x200	22	100x50x400	29	100x80x320	36	150x80x400	43	150x150x190
2	50x25x230	9	80x40x320	16	80x50x230A	23	100x80x190	30	100x80x350	37	150x100x190A	44	150x150x230
3	80x25x290	10	100x40x350A	17	80x50x230B	24	100x80x200A	31	100x80x430	38	150x100x190B	45	200x150x290
4	100x25x350	11	100x40x350B	18	100x50x230	25	100x80x200B	32	150x80x230	39	150x100x230	46	200x150x350A
5	80x40x200	12	100x40x400	19	100x50x290	26	100x80x230	33	150x80x290A	40	150x100x290	47	200x200x250
6	80x40x230	13	80x50x190A	20	100x50x320	27	100x80x250	34	150x80x290B	41	150x100x350A	48	200x200x320
7	80x40x250	14	80x50x190B	21	100x50x350	28	100x80x290	35	150x80x350	42	150x100x350B		

Hermetic

1475 rpm 50 Hz

Denomination of hydraulics shown in the characteristics maps

1	50x25x190	8	80x40x290	15	80x50x200	22	100x50x400	29	100x80x320	36	150x80x400	43	150x150x190	50	200x200x250
2	50x25x230	9	80x40x320	16	80x50x230A	23	100x80x190	30	100x80x350	37	150x100x190A	44	150x150x230	51	200x200x320
3	80x25x290	10	100x40x350A	17	80x50x230B	24	100x80x200A	31	100x80x430	38	150x100x190B	45	200x150x230		
4	100x25x350	11	100x40x350B	18	100x50x230	25	100x80x200B	32	150x80x230	39	150x100x230	46	200x150x290		
5	80x40x200	12	100x40x400	19	100x50x290	26	100x80x230	33	150x80x290A	40	150x100x290	47	200x150x350A		
6	80x40x230	13	80x50x190A	20	100x50x320	27	100x80x250	34	150x80x290B	41	150x100x350A	48	200x150x430A		
7	80x40x250	14	80x50x190B	21	100x50x350	28	100x80x290	35	150x80x350	42	150x100x350B	49	200x150x430B		

Hermetic

Contents General information Function Functional principle Design options **Characteristic maps** Advantages Technical data Documentation and tests Spare parts Monitoring equipment Contact

3550 rpm 60 Hz

1	50x25x190	8	80x40x290	15	80x50x200	22	100x50x400	29	100x80x320	36	150x80x400	43	150x150x190
2	50x25x230	9	80x40x320	16	80x50x230A	23	100x80x190	30	100x80x350	37	150x100x190A	44	150x150x230
3	80x25x290	10	100x40x350A	17	80x50x230B	24	100x80x200A	31	100x80x430	38	150x100x190B	45	200x150x290
4	100x25x350	11	100x40x350B	18	100x50x230	25	100x80x200B	32	150x80x230	39	150x100x230	46	200x150x350A
5	80x40x200	12	100x40x400	19	100x50x290	26	100x80x230	33	150x80x290A	40	150x100x290		
6	80x40x230	13	80x50x190A	20	100x50x320	27	100x80x250	34	150x80x290B	41	150x100x350A		
7	80x40x250	14	80x50x190B	21	100x50x350	28	100x80x290	35	150x80x350	42	150x100x350B		

Hermetic

Contents General information Function Functional principle Design options **Characteristic maps** Advantages Technical data Documentation and tests Spare parts Monitoring equipment Contact

1775 rpm 60 Hz

Denomination of hydraulics shown in the characteristics maps

1	50x25x190	8 80x40x290	15 80x50x200	22 100x50x400	29 100x80x320	36 150x80x400	43 150x150x190	50 200x200x250
2	50x25x230	9 80x40x320	16 80x50x230A	23 100x80x190	30 100x80x350	37 150x100x190A	44 150x150x230	51 200x200x320
3	80x25x290	10 100x40x350A	17 80x50x230B	24 100x80x200A	31 100x80x430	38 150x100x190B	45 200x150x230	
4	100x25x350	11 100x40x350B	18 100x50x230	25 100x80x200B	32 150x80x230	39 150x100x230	46 200x150x290	
5	80x40x200	12 100x40x400	19 100x50x290	26 100x80x230	33 150x80x290A	40 150x100x290	47 200x150x350A	
6	80x40x230	13 80x50x190A	20 100x50x320	27 100x80x250	34 150x80x290B	41 150x100x350A	48 200x150x430A	
7	80x40x250	14 80x50x190B	21 100x50x350	28 100x80x290	35 150x80x350	42 150x100x350B	49 200x150x430B	

Hermetic

Contents General information Function Functional principle Design options **Characteristic maps** Advantages Technical data Documentation and tests Spare parts Monitoring equipment Contact

Advantages of the canned motor pump

+

Best Available Pump Technology according to IPCC / TA-LUFT
Leakage-free, long-lasting operation: protection of personnel and environment
No shaft seals
Low space requirement
High level of reliability
Low expenditure for repairs / spare parts
Simple assembly and installation
Long service life of pump and motor
Low life cycle costs
Very smooth running

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Contact

Advantages of the canned motor pump

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

TECHNICAL DATA

Materials

VDMA No.	Parts designation	Model CNP / CNPF / CN	РК		
		Material class S-5 Carbon steel	Material class S-6 Carbon steel / Chrome steel	Material class C-6 Chrome steel	Material class A-8 Stainless steel
		Pressure rating PN 50	Pressure rating PN 50	Pressure rating PN 50	Pressure rating PN 50
Parts coming	into contact with conveying	g fluid	·	·	
102	Volute casing	1.0619	1.0619	1.4317	1.4409
230	Impeller	1.0619	1.4317	1.4317	1.4409
230	Auxiliary impeller ⁽¹⁾	JS 1025	1.4408	1.4408	1.4408
472	Slide ring	PTFE / K	PTFE / K	PTFE / K	PTFE / K
502	Wear ring	1.4028	1.4028	1.4028	1.4404
503	Impeller wear ring	1.4028	1.4028	1.4028	1.4404
529	Bearing sleeve	1.4571 / W5 ⁽²⁾	1.4571 / W5 ⁽²⁾	1.4571 / W5 ⁽²⁾	1.4571 / W5 ⁽²⁾
545	Bearing bush	1.4571 / SiC30	1.4571 / SiC30	1.4571 / SiC30	1.4571 / SiC30
816	Stator liner	Hastelloy C4	Hastelloy C4	Hastelloy C4	Hastelloy C4
817	Rotor liner	1.4571	1.4571	1.4571	1.4571
819	Motor shaft	1.4021	1.4021	1.4021	1.4571 / 1.4462
Parts that do	not come into contact with	conveying liquid	 		
811	Motor casing	1.0254	1.0254	1.0254	1.0254

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Contact

special materials / higher pressure ratings are possible on demand (1) parts only for CNPF and CNPK

(2) tungsten carbide coating

TECHNICAL DATA

Pressure and temperature limits

 \sim

yerre

Contents

LEDERLE

Hermetic

Canned motors

Canned motor data	
Output power P2:	max. 520 kW (50 Hz) / max. 622 kW (60 Hz)
Voltage (±10 %) / frequency / circuit:	400V / 50 Hz / delta
	480V / 60 Hz / delta
	500V / 50 Hz / delta
	600V / 60 Hz / delta
	690V / 50 Hz / star
	(all canned motors are suitable for inverter operation)
Insulation class:	H-180 / C-220 / C-400
Operating mode:	S1 according to EN 60034-1
Protection class:	IP 67 (stator), IP 55 (terminal box)
Motor protection in winding:	Thermistor KL180 (for H-180 winding), Thermistor KL210 (for C-220 winding), alternative PT100 Thermometer (for all windings) / PT100 for C-400 winding (inclusive)
Rotation monitoring:	ROMi (from motor size N34 / T34)
Explosion protection according to Directive 2014 / 34 / EU	(*) Based on the requirements of the non-electrical explosion protection, the gas groups are classified as follows:
Incl. EC type-examination certificate	Thickness of coating > 200 μ m – gas group IIB
Marking: 🐼 II 2 G Ex de IIC T1 to T6*	Thickness of coating ≤ 200 µm — gas group IIC

Noise expectancy values [examples of different motor sizes]

Motors	N34L-2	N34XL-2	N54XL-2	N64XL-2
Output power [P2 at 50 Hz]	8.0 kW	14.8 kW	24.0 kW	41.0 kW
max. expected sound pressure level dB(A) at 50 Hz	57	59	61	64
Output power [P2 at 60 Hz]	10.5 kW	17.2 kW	27.0 kW	48.0 kW
max. expected sound pressure level dB(A) at 60 Hz	58	60	62	64

Hermetic

Contents General information Function Functional principle Design options Characteristic maps Advantages **Technical data** Documentation and tests Spare parts Monitoring equipment

Documentation and tests

Documentation according to HERMETIC Standard, consisting of:	Standard tests	
Operating manual for the HERMETIC pump	Hydrostatic pressure test with 1.5x nominal pressure	
Technical specifications	Test run according to DIN EN ISO9906, Class 2 B (5 measuring points)	
Sectional drawings with position numbers	Balancing of the shaft and impeller according to DIN ISO 1940, 6.3 [without report]	
Dimensional drawing		
Cable connection diagram	Axial thrust measurement Leak test for the complete pump with N ₂ at 6 bar	
Acceptance report and pump characteristic curve		
Electric test report		
Slip ring report / gap size report, slide bearing clearancies	Additional testing possible on request, e.g.:	
EC type-examination certificate PTB 99 ATEX	NPSH-test / Helium leakage test / vibration test	
EU Declaration of Conformity	ultrasonic test / PMI-test	

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Contact

SPARE PARTS

Reduced part list / example for pump type CNPF

Hermetic

Contents General information Function Functional principle Design options Characteristic maps Advantages Technical data Documentation and tests Spare parts Monitoring equipment Contact

SPARE PARTS

Reduced part list

VDMA Pos.	Name	VDMA Pos.	Name		
102	Volute casing	819	Motor shaft		
411	Spiral wound	230	Impeller		
502	Wear ring	529	Bearing sleeve		
503	Impeller wear ring	230	Auxiliary impeller (*)		
601	Balancing disc	472	Slide ring		
146	Intermediate lantern	(*) only CNPF and	(*) only CNPF and CNPK		
545	Bearing bush				
400	Gasket	Recommend	Recommended spare parts stock		
		For two-year	operation: none		
816	Stator liner	For overhaul	For overhaul: for each pump		
812	Motor casing cover, front	4 pcs. Pos. 4 4 pcs. Pos. 4	4 pcs. Pos. 400 gasket 4 pcs. Pos. 411 spiral wound		
812	Motor casing cover	2 pcs. Pos. 5	2 pcs. Pos. 529 bearing sleeve		
811	Motor casing	2 pcs. Pos. 4	2 pcs. Pos. 472 slide ring		
360	Bearing cover				
545	Bearing bush				

Refer to the relevant assembly drawing for the full list of the complete parts. These from part of the standard documentation.

, îț	Hermetic
(Contents
(General information
F	Function
F	Functional principle
[Design options
(Characteristic maps
ļ	Advantages
1	Technical data
[Documentation and tests
5	Spare parts
Ι	Monitoring equipment
(Contact

Overview of the safety- and function-related monitoring equipment

Hermetically sealed centrifugal pumps are principally manufactured for use in potentially explosive atmospheres. For this reason the pumps comply with electrical as well as non-electrical explosion protection requirements.

Level monitoring of the pumped liquid for detecting and avoiding dry run

The pump's interior and rotor chamber must be always filled with the pumped liquid for reasons of safety. HERMETIC provides suitable level monitoring equipment for each pump complying with the explosion protection requirements according to directive 2014 / 34 / EU. Level monitoring can be recommended principally for application cases which do not mandatory comply with explosion protection requirements. Level monitoring prevents the pump from running dry and to be affected by major damages such as by destruction of the slide bearings or by exceeding inadmissible high temperatures caused by missing cooling and lubricating flow.

Temperature monitoring for detecting and avoiding inadmissible high temperatures in the pump and the motor

Temperature monitoring ensures that the pump is switched off when achieving inadmissible high temperatures. HERMETIC provides suitable temperature monitoring equipment for each pump complying with explosion protection requirements according to directive 2014 / 34 / EU. Monitoring of the liquid temperature allows a reliable control to ensure the operation of the pump within the admissible range and to ensure the internal motor cooling of a canned motor pump. For liquids with a pour point that is higher than the ambient temperature, the liquid temperature monitoring can also be used to prevent the start-up of the pump as long as the maximum admissible viscosity of the liquid is reached. In order to protect canned motors against inadmissible high temperatures, the winding is equipped either with PTC thermistors or PT100 resistance thermometers.

Rotor position monitoring for detecting and avoiding axial wear Axial thrust balancing is mainly influenced by the operating method of the pump, plant conditions and various physical properties of the pumped liquid. For an early detection of an imminent malfunction it is recommended to install a rotor position monitoring device. This electronic protection equipment monitors the axial shaft position of the rotor during operation in a hermetically sealed and contact-free way. Combined with the level and temperature monitoring an efficient detection of imminent failures is possible.

Rotation monitoring for detecting and avoiding incorrect phase sequence

The correct rotating direction of hermetically sealed centrifugal pumps with canned motor cannot be checked visually from the outside. Due to a wrong phase sequence in the power line the pump is operated with an incorrect rotating direction without being noticed what might result in considerable damages to the pump. By default, hermetically sealed centrifugal pumps with canned motor are equipped with an electronic rotation monitor in the form of a phase sequence relay.

Hermetic

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Contact

Overview of the safety- and function-related monitoring equipment

Level monitoring of the pumped liquid for detecting and avoiding dry running

- Level monitoring by / with:
- KSR magnetic float switch [LS]
- Vibration limit switch [LS]
- Optoelectronic liquid level limit transducer [LS]

Temperature monitoring for detecting and avoiding inadmissible high temperatures in the pump and the motor

Temperature monitoring by / with:

Resistance thermometer PT100 [TI]Thermistor [TS]

Rotor position monitoring for detecting and avoiding axial wear

Rotor position monitoring by / with: MAP [GI]

Rotation monitoring for detecting and avoiding incorrect phase sequence

Rotation monitoring by / with: ROMi [GS]

Example shown

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

CONTACT

sales-support@hermetic-pumpen.com

www.hermetic-pumpen.com

YouTube | LinkedIn | Expert tool

LEDERLE Hermetic Sealless Technology Unlimited

Product information CNP-CNPF-CNPK / EN / 06 / 2022 All information given in this document corresponds to the state of the art at the time of print. We reserve the right to make technical improvements and changes at any time. Contents

Function

General information

Functional principle

Characteristic maps

Documentation and tests

Monitoring equipment

Design options

Advantages

Spare parts

Contact

Technical data