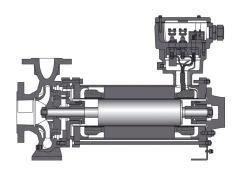
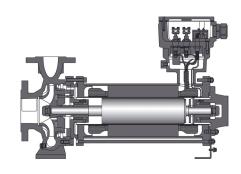
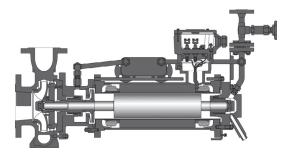


PRODUCT INFORMATION CANNED MOTOR PUMP TYPE CN / CNF / CNK

HERMETIC E-Line






Contents

General information	3
Function	4
Functional principle CN	4
Functional principle CNF	5
Functional principle CNK	6
Functional principle	7
Bearings	7
Axial thrust balancing	8
Design options	9
Characteristic maps	11
2900 rpm 50 Hz	11
1450 rpm 50 Hz	12
3500 rpm 60 Hz	13
1750 rpm 60 Hz	14

Advantages	15
Technical data	17
Materials	17
Pressure and temperature limits	18
Canned motors	19
Documentation and tests	20
Spare parts	21
Monitoring equipment	23
Contact	25

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Information

Operational areas / applications

For the safe transport of aggressive, toxic, hot, explosive, valuable and flammable liquids and liquefied gases.

Model / design

Horizontal, sealless spiral housing pumps in process design with completely closed canned motor with radial impeller, single-stage, single-flow. The connection measurements of the housing comply with EN 22 858 / ISO 2858.

Canned motor pump type CN

The CN model is a standard design of the HERMETIC canned motor pump and is suitable for conveying all common liquids that are not close to steam pressure (not boiling media).

Canned motor pump type CNF

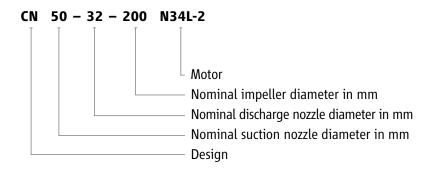
The CNF model is the version for liquefied gases, boiling media and condensate. With an integrated auxiliary impeller and internal fluid return, it is suitable for conveying liquids close to steam pressure.

Canned motor pump type CNK

The CNK model is the version for conveying hot organic heat transfer oils as well as heating bath liquids. Depending on the application, this version are equipped with plate heat exchanger or tubular coolers.

Drive

The rotor lining, one of our core competences, is manufactured using the compact extrusion method and as a nickel-base alloy, it is an essential component of the highly efficient canned motor. The pressure-resistant enclosed version of our canned motor complies with explosion protection according to Directive 2014 / 34 / EU. The canned motor filled with


liquid accelerates to the operating speed in seconds. It is wear-free and maintenance-free during continuous operation due to the hydrodynamic sleeve bearings. The canned motor with low noise and vibration and offers double security to prevent leaks.

Operating data

Frequency:	50 Hz	60 Hz
Pump capacity [Q]:	max. 1700 m³/h	max. 1800 m ³ /h
Pumping head [H]:	max. 150 m	max. 220 m
Output power [P2]:	max. 520 kW	max. 622 kW
Conveyed material temperature [t] CN / CNF:	–120°C to +360°C	–120°C to +360°C
Conveyed material temperature [t] CNK:	max. +400°C	max. +400°C
Operating pressure:	16 / 25 bar	16 / 25 bar

(Extended rating scheme available on request)

Pump and hydraulic denomination

Contents

General information

Function

Functional principle

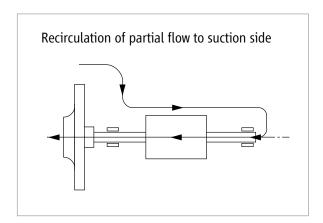
Design options

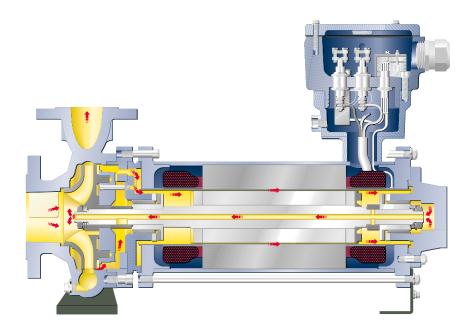
Characteristic maps

Advantages

Technical data

Documentation and tests


Spare parts


Monitoring equipment

₹ Herm

Functional principle CN

The partial flow for cooling the motor and lubricating the slide bearings will be deverted at the periphery of the impeller and, after having passed through the motor, is recirculated through the hollow shaft to the suction side of the impeller. This design is suitable for the delivery of uncritical liquids at low vapour pressures.

Contents

General information

Function

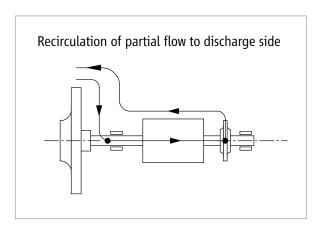
Functional principle

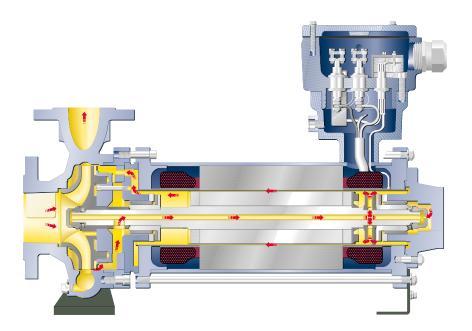
Design options

Characteristic maps

Advantages

Technical data


Documentation and tests


Spare parts

Monitoring equipment

Functional principle CNF

The partial flow for cooling the motor and lubricating the slide bearings will be diverted at the periphery of the impeller and, after having passed through the motor, is recirculated to the discharge side. An auxiliary impeller is used to overcome the hydraulic losses encountered along the way. The recirculation of the partial flow towards discharge side ensures that the heated motor cooling flow has sufficient excess pressure above the boiling point of the pumped liquid during re-entry into the pump. This pump design can be used for liquefied gases with an extremely steep vapour pressure curve.

Contents

General information

Function

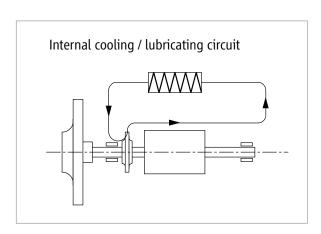
Functional principle

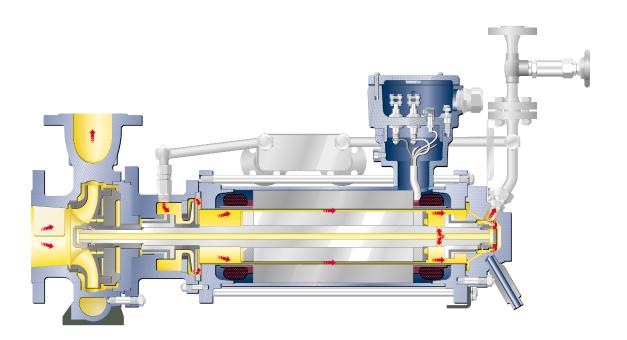
Design options

Characteristic maps

Advantages

Technical data


Documentation and tests


Spare parts

Monitoring equipment

Functional principle CNK

The liquid is delivered from the suction side through the impeller to the discharge side. A thermal barrier avoids the direct heat transfer from the pump to the motor part. The motor heat losses are dissipated by a secondary cooling / lubricating circuit via a separate heat exchanger. This cooling / lubricating circuit also supplies the slide bearings. Thus the liquids at temperatures up to +400 °C can be conveyed while the secondary cooling cycle is at a lower temperature level. This construction is also suitable for conveying polluted or particle-containing liquids. If applicable, pure process liquid needs to be injected into the motor circuit.

Contents

General information

Function

Functional principle

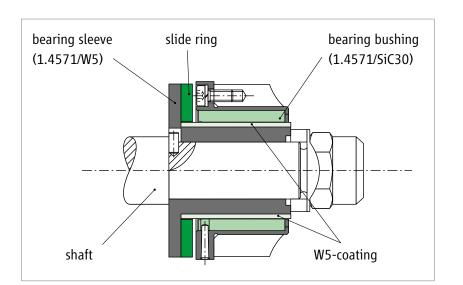
Design options

Characteristic maps

Advantages

Technical data

Documentation and tests


Spare parts

Monitoring equipment

Bearings

The hermetically sealed design requires the arrangement of the bearings within the pumped liquid. Therefore, only hydrodynamic slide bearings are used in most cases. During normal operation slide bearings have the advantage that there is no contact between the sliding surfaces of the bearing. In continuous operation, they are wear- and maintenance-free. Service life of 8 to 10 years can be easily achieved by using hermetically sealed pumps.

The almost universal bearing combination materials based on tungsten carbide (W5) and silicon carbide (SiC30) have proven to be the best choice. These combinations consist of a metallic shaft sleeve made of stainless steel (1.4571) coated with tungsten carbide by means of a "High Velocity Oxygen Fuel" process and a fixed bearing bushing made of ceramic material (SiC30) that is surrounded by a sleeve made of stainless steel. SiC30 is a mixed material of silicon carbide and graphite, combining the product advantages of both materials. Conditions of mixed friction, as they may arise for example during start-up and stopping of the pump, can be easily handled with SiC30. Moreover, this material is thermal shock resistant (high resistance against changes in temperature), as well as chemically inert, blister resistant (no formation of bubbles at material surface) and abrasion resistant.

Contents

General information

Function

Functional principle

Design options

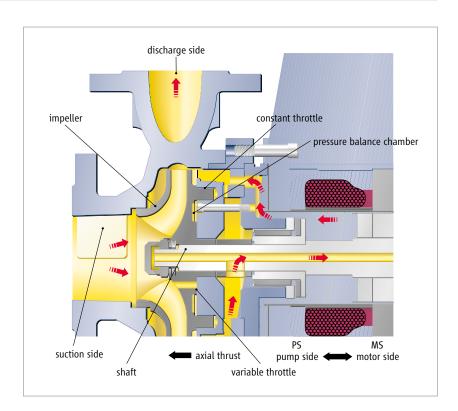
Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts


Monitoring equipment

Axial thrust balancing

The development of hermetically sealed pumps was dependent on the solution of a central problem, namely the elimination of axial forces of the rotor equipment. The various liquid properties exclude the possibility of using mechanical axial bearings. The only universal solution to this problem lay in hydraulic balancing of the rotor.

The functional principle of the hydraulic balancing device of series CN / CNF / CNK is based on the combination of a constant throttle (labyrinth gap) at the outer diameter of the impeller and a variable throttle near the impeller hub. If the rotor will be axially displaced from its balanced position, the pressure within the pressure balance chamber changes due to the valve effect of the variable throttle and thus counteracts the rotor displacement. Therefore, the axial position of the shaft is automatically controlled during operation in order that a balanced condition is reached and thus no axial forces act on the axial bearing collar.

ZART®
simply best balance

Contents

General information

Function

Functional principle

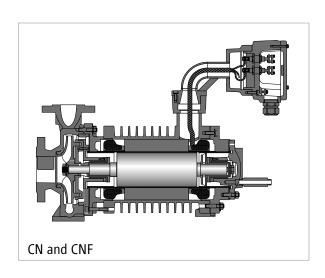
Design options

Characteristic maps

Advantages

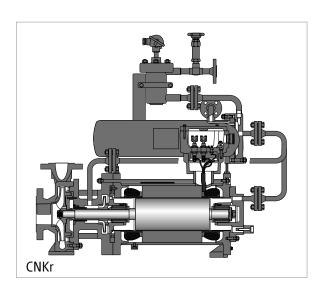
Technical data

Documentation and tests


Spare parts

Monitoring equipment

Design


Construction without cooling

In the absence of cooling liquid, special windings of insulation class C-220 or C-400 can be used for conveying liquids with a temperature up to +360°C. This design is characterised by fins used for convection cooling and by a terminal box extension.

Cooled construction

As an option to the plate heat exchanger, also tubular coolers can be used. Cleaning and maintenance can be effected more easily.

Contents

General information

Function

Functional principle

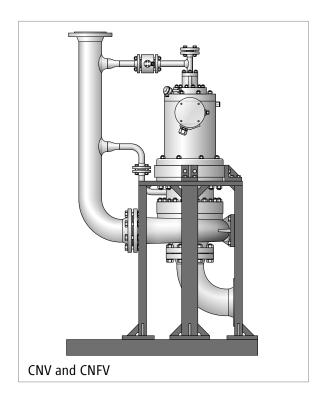
Design options

Characteristic maps

Advantages

Technical data

Documentation and tests


Spare parts

Monitoring equipment

Design

Pressure gases / liquefied gases

The vertical design of the pump can be necessary if the capacity of the slide bearings is too small due to a lower viscosity of the pumped liquid. In this case, the slide bearings do not have a supporting function in radial direction, but only a guiding function. In axial direction, the rotor weight is hydrostatically supported.

Contents

General information

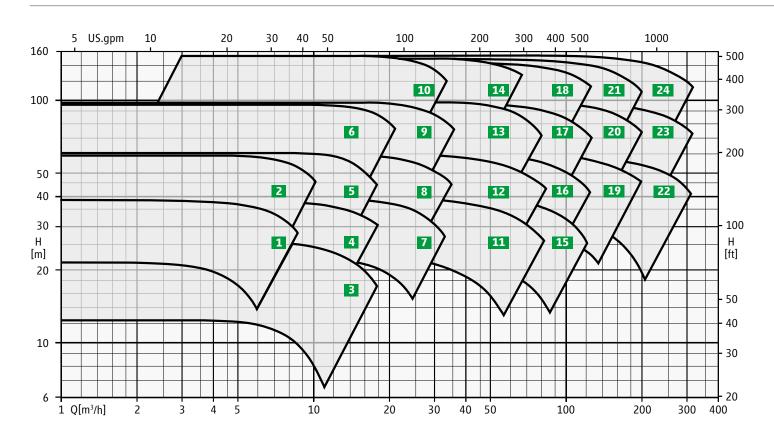
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

2900 rpm 50 Hz

Denomination of hydraulics shown in the characteristics maps

1	40-25-160	7	65-40-160	13	80-50-250	19	125-80-200
2	40-25-200	8	65-40-200	14	80-50-315	20	125-80-250
3	50-32-125	9	65-40-250	15	100-65-160	21	125-80-315
4	50-32-160	10	65-40-315	16	100-65-200	22	125-100-200
5	50-32-200	11	80-50-160	17	100-65-250	23	125-100-250
6	50-32-250	12	80-50-200	18	100-65-315	24	125-100-315

Contents

General information

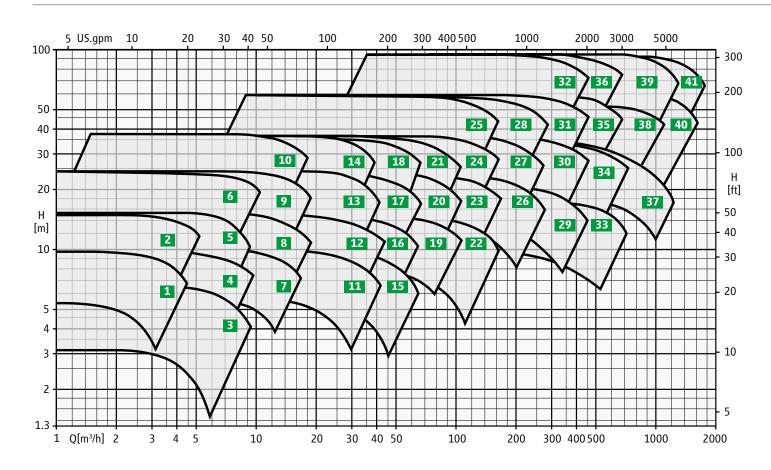
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

1450 rpm 50 Hz

Denomination of hydraulics shown in the characteristics maps

1	40-25-160	6 50-32-250	11 80-50-160	16 100-65-200	21 125-80-315	26 125-250	31 150-400	36 200-500	41 300-500
2	40-25-200	7 65-40-160	12 80-50-200	17 100-65-250	22 125-100-200	27 125-315	32 150-500	37 250-315	
3	50-32-125	8 65-40-200	13 80-50-250	18 100-65-315	23 125-100-250	28 125-400	33 200-250	38 250-400	
4	50-32-160	9 65-40-250	14 80-50-315	19 125-80-200	24 125-100-315	29 150-250	34 200-315	39 250-500	
5	50-32-200	10 65-40-315	15 100-65-160	20 125-80-250	25 100-400	30 150-315	35 200-400	40 300-400	

Contents

General information

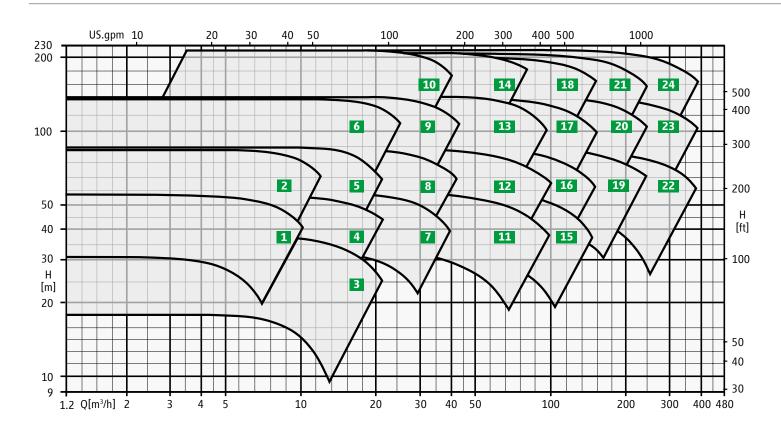
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

3500 rpm 60 Hz

Denomination of hydraulics shown in the characteristics maps

1	40-25-160	7	65-40-160	13	80-50-250	19	125-80-200
2	40-25-200	8	65-40-200	14	80-50-315	20	125-80-250
3	50-32-125	9	65-40-250	15	100-65-160	21	125-80-315
4	50-32-160	10	65-40-315	16	100-65-200	22	125-100-200
5	50-32-200	11	80-50-160	17	100-65-250	23	125-100-250
6	50-32-250	12	80-50-200	18	100-65-315	24	125-100-315

Contents

General information

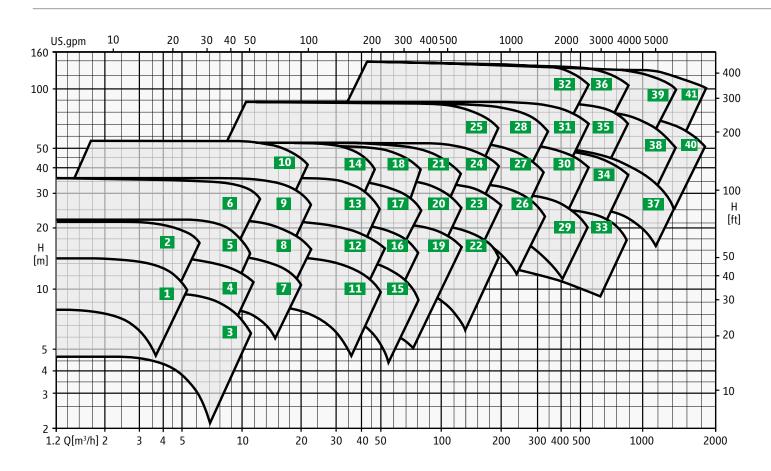
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

1750 rpm 60 Hz

Denomination of hydraulics shown in the characteristics maps

1	40-25-160	6 50-32-250	11 80-50-160	16 100-65-200	21 125-80-315	26 125-250	31 150-400	36 200-500	41 300-500
2	40-25-200	7 65-40-160	12 80-50-200	17 100-65-250	22 125-100-200	27 125-315	32 150-500	37 250-315	
3	50-32-125	8 65-40-200	13 80-50-250	18 100-65-315	23 125-100-250	28 125-400	33 200-250	38 250-400	
4	50-32-160	9 65-40-250	14 80-50-315	19 125-80-200	24 125-100-315	29 150-250	34 200-315	39 250-500	
5	50-32-200	10 65-40-315	15 100-65-160	20 125-80-250	25 100-400	30 150-315	35 200-400	40 300-400	

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Advantages of the canned motor pump

Best Available Pump Technology according to IPCC / TA-LUFT

Leakage-free, long-lasting operation: protection of personnel and environment

No shaft seals

Low space requirement

High level of reliability

Low expenditure for repairs / spare parts

Simple assembly and installation

Long service life of pump and motor

Low life cycle costs

Very smooth running

Contents

General information

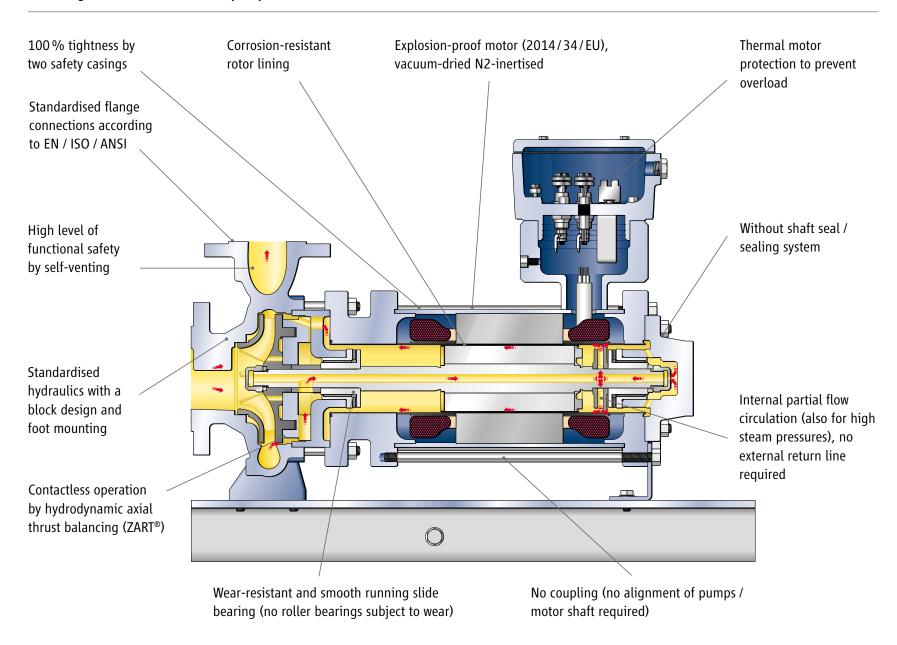
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

Advantages of the canned motor pump

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Materials

VDMA No.	Parts designation	Model CN / CNF / CNK		
		Material design S1	Material design S2	Material design C
		Pressure rating PN 25	Pressure rating PN 25	Pressure rating PN 16
Parts coming	into contact with conveying f	luid		
102	Volute casing	JS 1025	1.0619+N	1.4408
161	Casing cover	1.0570 / 1.0460	1.0570 / 1.0460	1.4571
230	Impeller	JL 1040 / JS 1025	JL 1040 / JS 1025	1.4408
230	Auxiliary impeller(1)	JL 1030	JL 1030	1.4581
344	Bearing support lantern	1.0570 / 1.0460	1.0570 / 1.0460	1.4571
360	Bearing cover	1.0570 / 1.0460	1.0570 / 1.0460	1.4571
472	Slide ring	PTFE / K	PTFE / K	PTFE / K
513	Wear ring insert	JL 1030	JL 1030	1.4571
529	Bearing sleeve	1.4571 / W5 ⁽²⁾	1.4571 / W5 ⁽²⁾	1.4571 / W5 ⁽²⁾
545	Bearing bush	1.4571 / SiC30	1.4571 / SiC30	1.4571 / SiC30
816	Stator liner	Hastelloy C4	Hastelloy C4	Hastelloy C4
817	Rotor liner	1.4571	1.4571	1.4571
819	Motor shaft	1.4571 / 1.4021	1.4571 / 1.4021	1.4571
Parts that do	not come into contact with co	nveying liquid	·	
811	Motor casing	1.0254	1.0254	1.0254

special materials / higher pressure ratings are possible on demand

Contents

General information

Function

Functional principle

Design options

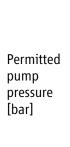
Characteristic maps

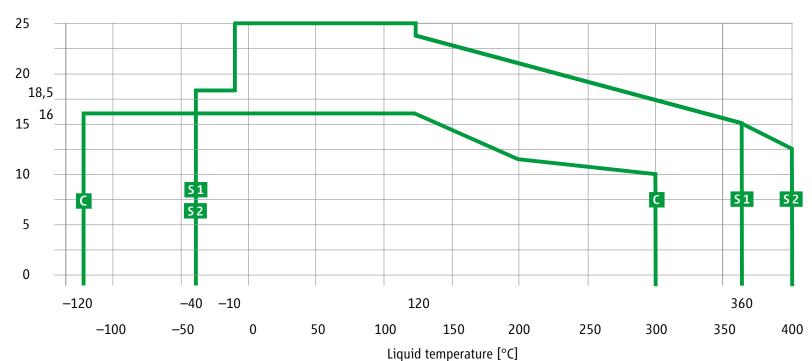
Advantages

Technical data

Documentation and tests

Spare parts


Monitoring equipment


⁽¹⁾ parts only for CNF and CNK

⁽²⁾ tungsten carbide coating

Pressure and temperature limits

Material design S1, S2 and C

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Canned motors

Output power P2:	max. 520 kW (50 Hz) / max. 622 kW (60 Hz)
Voltage (±10 %) / frequency / circuit:	400V / 50 Hz / delta
	480V / 60 Hz / delta
	500V / 50 Hz / delta
	600V / 60 Hz / delta
	690V / 50 Hz / star
	(all canned motors are suitable for inverter operation)
Insulation class:	H-180 / C-220 / C-400
Operating mode:	S1 according to EN 60034-1
Protection class:	IP 67 (stator), IP 55 (terminal box)
Motor protection in winding:	Thermistor KL180 (for H-180 winding), Thermistor KL210 (for C-220 winding), alternative PT100
	Thermometer (for all windings) / PT100 for C-400 winding (inclusive)
Rotation monitoring:	ROMi (from motor size N34 / T34)
Explosion protection according to Directive 2014 / 34 / EU	(*) Based on the requirements of the non-electrical explosion protection, the gas groups are classified as follows:
Incl. EC type-examination certificate	Thickness of coating > 200 μm – gas group IIB
Marking: 🐼 II 2 G Ex de IIC T1 to T6*	Thickness of coating ≤ 200 μm – gas group IIC

Noise expectancy values [examples of different motor sizes]

Motors	N34L-2	N34XL-2	N54XL-2	N64XL-2
Output power [P2 at 50 Hz]	8.0 kW	14.8 kW	24.0 kW	41.0 kW
max. expected sound pressure level dB(A) at 50 Hz	57	59	61	64
Output power [P2 at 60 Hz]	10.5 kW	17.2 kW	27.0 kW	48.0 kW
max. expected sound pressure level dB(A) at 60 Hz	58	60	62	64

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Documentation and tests

Documentation according to HERMETIC Standard, consisting of:
Operating manual for the HERMETIC pump
Technical specifications
Sectional drawings with position numbers
Dimensional drawing
Cable connection diagram
Acceptance report and pump characteristic curve
Electric test report
Slip ring report / gap size report, slide bearing clearancies
EC type-examination certificate PTB 99 ATEX
EU Declaration of Conformity

Standard tests

Hydrostatic pressure test with 1.5x nominal pressure

Test run according to DIN EN ISO9906, Class 2 B (5 measuring points)

Balancing of the shaft and impeller according to DIN ISO 1940, 6.3 [without report]

Axial thrust measurement

Leak test for the complete pump with N₂ at 6 bar

Additional testing possible on request, e.g.:

NPSH-test / Helium leakage test / vibration test

ultrasonic test / PMI-test

Contents

General information

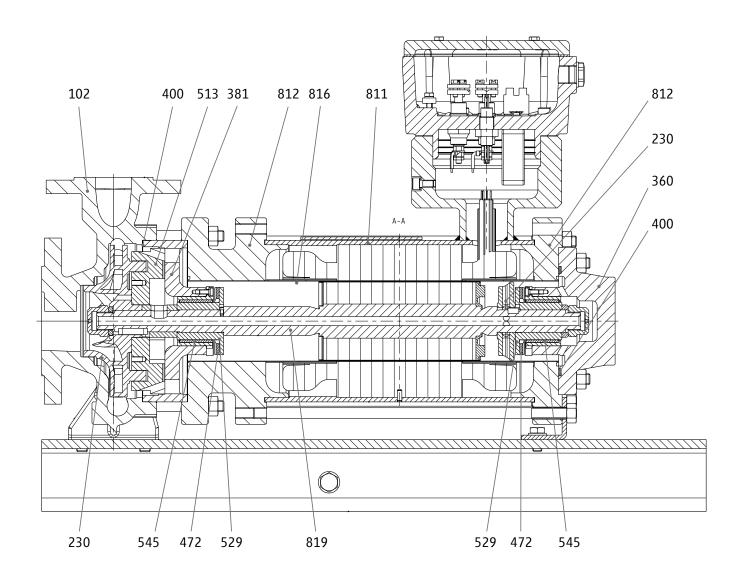
Function

Functional principle

Design options

Characteristic maps

Advantages


Technical data

Documentation and tests

Spare parts

Monitoring equipment

Reduced part list / example for pump type CNF

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Reduced part list

VDMA Pos.	Name
102	Volute casing
513	Wear ring insert
381	Bearing support
545	Bearing bush
400	Gasket

VDMA Pos.	Name
819	Motor shaft
230	Impeller
529	Bearing sleeve
230	Auxiliary impeller (*)
472	Slide ring

^(*) only CNF and CNK

816	Stator liner
812	Motor casing cover, front
812	Motor casing cover
811	Motor casing
360	Bearing cover
545	Bearing bush

Refer to the relevant assembly drawing for the full list of the complete parts. These from part of the standard documentation.

Recommended spare parts stock

For two-year operation: none
For overhaul: for each pump

4 pcs. Pos. 400 gasket

2 pcs. Pos 529 bearing sleeve

2 pcs. Pos. 545 bearing bush

2 pcs. Pos. 472 slide ring

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Overview of the safety- and function-related monitoring equipment

Hermetically sealed centrifugal pumps are principally manufactured for use in potentially explosive atmospheres. For this reason the pumps comply with electrical as well as non-electrical explosion protection requirements.

Level monitoring of the pumped liquid for detecting and avoiding dry run

The pump's interior and rotor chamber must be always filled with the pumped liquid for reasons of safety. HERMETIC provides suitable level monitoring equipment for each pump complying with the explosion protection requirements according to directive 2014 /34 / EU. Level monitoring can be recommended principally for application cases which do not mandatory comply with explosion protection requirements. Level monitoring prevents the pump from running dry and to be affected by major damages such as by destruction of the slide bearings or by exceeding inadmissible high temperatures caused by missing cooling and lubricating flow.

Temperature monitoring for detecting and avoiding inadmissible high temperatures in the pump and the motor

Temperature monitoring ensures that the pump is switched off when achieving inadmissible high temperatures. HERMETIC provides suitable temperature monitoring equipment for each pump complying with explosion protection requirements according to directive 2014 / 34 / EU. Monitoring of the liquid temperature allows a reliable control to ensure the operation of the pump within the admissible range and to ensure the internal motor cooling of a canned motor pump. For liquids with a pour point that is higher than the ambient temperature, the liquid temperature monitoring can also be used to prevent the start-up of the pump as long as the maximum admissible viscosity of the liquid is reached.

In order to protect canned motors against inadmissible high temperatures, the winding is equipped either with PTC thermistors or PT100 resistance thermometers.

Rotor position monitoring for detecting and avoiding axial wear

Axial thrust balancing is mainly influenced by the operating method of the pump, plant conditions and various physical properties of the pumped liquid. For an early detection of an imminent malfunction it is recommended to install a rotor position monitoring device. This electronic protection equipment monitors the axial shaft position of the rotor during operation in a hermetically sealed and contact-free way. Combined with the level and temperature monitoring an efficient detection of imminent failures is possible.

Rotation monitoring for detecting and avoiding incorrect phase sequence

The correct rotating direction of hermetically sealed centrifugal pumps with canned motor cannot be checked visually from the outside. Due to a wrong phase sequence in the power line the pump is operated with an incorrect rotating direction without being noticed what might result in considerable damages to the pump. By default, hermetically sealed centrifugal pumps with canned motor are equipped with an electronic rotation monitor in the form of a phase sequence relay.

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

Overview of the safety- and function-related monitoring equipment

Level monitoring of the pumped liquid for detecting and avoiding dry running

Level monitoring by / with:

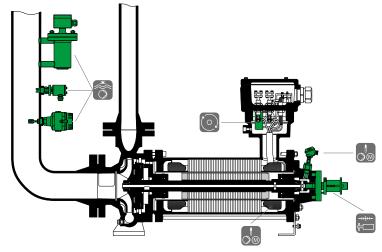
- KSR magnetic float switch [LS]
- Vibration limit switch [LS]
- Optoelectronic liquid level limit transducer [LS]

Temperature monitoring for detecting and avoiding inadmissible high temperatures in the pump and the motor

Temperature monitoring by / with:

- Resistance thermometer PT100 [TI]
- Thermistor [TS]

Rotor position monitoring for detecting and avoiding axial wear


Rotor position monitoring by / with: MAP [GI]

Rotation monitoring for detecting and avoiding incorrect phase sequence

Rotation monitoring by / with:

ROMi [GS]

Example shown

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

PRODUCT INFORMATION

Contact

sales-support@hermetic-pumpen.com
www.hermetic-pumpen.com

YouTube | LinkedIn | Expert tool

Contents

General information

Function

Functional principle

Design options

Characteristic maps

Advantages

Technical data

Documentation and tests

Spare parts

Monitoring equipment

